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Abstract--Unsteady and two-dimensional numerical simulation is applied to-study the transition process 
from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a 
liquid bridge :in the half-floating zone. The results of numerical tests show clearly the fractal structure of 
period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed 
with increasing temperature difference. The Feigenbaum universal constant is given by the present paper 

as 64 = 4.853, which can be compared with the theoretical value 4.6642016. 

1. INTRODUCTION 

The route to turbulent convection is a typical subject 
in the fluid mecharfics of a dissipative system. The 
Rayleigh-Benard convection induced by the buoy- 
ancy has been studied extensively (see, for example, 
in refs [1-3]), although open problems of the subject 
are still attractive at the present time. There are many 
ways to determine 1:he turbulence of the convection, 
depending on the typical parameters such as the Ray- 
leigh number, the Prandtl number and geometric 
aspect. From the viewpoint of theory, the transition 
process of a dissipative system other than the Benard 
convection will be interesting. 

Thermocapillary convection driven by the non-uni- 
formity of surface tension on the free surface is ano- 
ther typical dissipative system, and has been studied 
particularly in microgravity fluid mechanics. Ground- 
based studies of thermocapillary convection in the 
liquid bridge of a half-floating zone, open-liquid disk 
or multi-layers of liquid medium were carried out to 
emphasize the thermocapillary effect in comparison 
with the buoyancy effect by reducing the typical scale. 
Half-floating-zone convection is a subject of great 
interest from the viewpoint of both the dissipative 
system on theoretical side and the space materials 
processes on the application side. The studies of the 
transition process from steady state to oscillatory state 
for convection in the half-floating zone have con- 
centrated on the onset of oscillation. The experiments 
were completed mostly by measurement of tempera- 
ture, using an inserted thermocouple inside the liquid 
bridge or near the free surface [4~5]. Recently, 
measurements of free surface waves were also pre- 
sented [7, 8]. All experiments gave the features near 
the onset of oscillation, which is far from a complete 
turbulence. The instability analyses suggested the 
mechanism of hydrothermal wave instability [9] and 

surface wave instability [10] for a simplified one- 
dimensional basic state. The analyses extended to the 
two-dimensional basic state with symmetric assump- 
tion [11] and for non-symmetric cases [12]. The influ- 
ence of the gravitational effect on the onset of oscil- 
lation, even for the case with small Bond numbers, was 
also analyzed, and the results showed the important 
effects of gravity [13]. On the other hand, some studies 
suggested that the oscillatory convection in the half- 
floating zone is not induced by instability, but comes 
from the different periods mass and heat flux [14]. 
Therefore, the subject of onset oscillation, which is 
only the initial period of transition to turbulence, is 
still an open problem. 

In the present paper, a complete route to turbulent 
convection is presented by the method of numerical 
simulation for two-dimensional and unsteady mode 
of the half-floating zone. Numerical test is con- 
centrated on the bifurcation feature during the tran- 
sition process. Subharmonic bifurcation is obtained 
by calculation, and the Feigenbaum universal con- 
stant is given close to the theoretical value. The physi- 
cal model and numerical simulation are discussed in 
the next section, and the bifurcation feature is pre- 
sented in Section 3. The last section contains con- 
clusions and discussions. 

2. PHYSICAL MODEL AND MATHEMATICAL 
DESCRIPTION 

The two-dimensional half floating zone consists of 
a liquid column floating in a gap between two parallel 
planes with the same width, Do = 4 ram, and infinite 
extension. The upper plane has relatively high tem- 
perature T~ in comparison with the lower one T]. The 
geometric aspect is adopted as L/Do = 1, with the 
minimum width of the liquid bridge Omi n = 0 . 9  O0,  

where L is the height of liquid bridge, as shown in 
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NOMENCLATURE 

A geometrical aspect u' 
B0 static Bond number 
Omi n minimum width of liquid bridge U[ 
Do width of liquid bridge at upper or v 

lower wall 
f basic frequency of oscillation v' 
g gravitational acceleration 
Gr Grashof number x 
H function of free surface shape x'  
k thermal diffusion coefficient y 
L height of liquid bridge y '  
Ma Marangoni number 
P~ Prandtl number 
R~ Reynolds number 
t dimensionless time 3 
t' dimensional time AT' 
T dimensionless temperature A T" 
T' dimensional temperature v 
T; dimensional temperature of lower wall p 
T~ dimensional temperature of upper wall a 
u horizontal component of 

dimensionless velocity co 

horizontal component of dimensional 
velocity 
reference velocity 
axial component of dimensionless 
velocity 
axial component of dimensional 
velocity 
dimensionless abscissa coordinate 
dimensional abscissa coordinate 
dimensionless axial coordinate 
dimensional axial coordinate. 

Greek symbols 
thermal expansion coefficient 
applied temperature difference 
critical applied temperature difference 
viscosity coefficient 
density of fluid 
surface tension coefficient 
stream-function 
vorticity. 

Fig. 1. The direction of the gravity vector is opposite 
to the y-axis. The configuration of the liquid bridge is 
determined by the static equilibrium condition and 
assumed to be unchanged in the computational 
process. The Boussinesq approximation for an incom- 
pressible fluid is used. The Navier-Stokes equation 
and the energy equation described by dimensionless 
vorticity o3, stream function ~k and temperature T are 
applied for the convection and heat transfer processes 
in the liquid bridge. The height of the liquid bridge L 
is adopted as the characteristic length. The typical 
velocity U( = IOa/~T'l (T'2--T~)/pv is introduced 
from the balance of the tangential shear stresses at the 
free surface, where T ~ -  T~ is the applied temperature 

-- X 

Drain 

Liquid !ridge 

/ 
y ~ D o  7"; 

Fig. 1. Schematic diagram of a two-dimensional liquid 
bridge. 

difference between the top and the bottom walls. The 
dimensionless quantities may be defined as follows. 

O g~a ( T i -  T~) 
x" y' t'U; ( 2 1  

x = z  Y=Z t = ~ -  u ; -  
pv 

u' v' T' gpL 2 

U;L U;L g 3 ( T I -  T])L 3 
R s -  M ~ -  G r - -  v 2  

V K 

(1) 

where superscript prime expresses dimensional quan- 
tities, for example, (u', v', O) is the dimensional velocity 
vector, a, 3, v, x, Oa/OT, and g are, respectively, the 
surface tension coefficient, thermal expansion 
coefficient, kinematic viscosity, thermal diffusion 
coefficient, differentiation of surface-tension respected 
to temperature, and the Earth's gravitational accel- 
eration. The non-dimensional parameters involve 
static Bond number B0, the Grashof number Gr, the 
Reynolds number R~ based on the typical velocity 
U;, and Prandtl number Pr = v/r. The Marangoni 
number, Reynolds number and Prandtl number are 
connected by Ma = Rs' Pr. 

The stream function ~k and vorticity ~o are intro- 
duced, respectively, in non-dimensional Cartesian 
coordinates (x, y, z) as follows : 

0q, 00 
U=~y v = - - O ~  w = 0  (2) 
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dv ~u 
co ax ~y" (3) 

Then, the dimensionless equations for 0, co and tem- 
perature T may be written as [15] : 

a~O a~O 
~,x~ + 8y ~ = - co  (4) 

(&o aO Oo~ dO aog) deo~ aXo G~dT 
R~ ~ + ay ax ax Ty = ~ ~ ay ~ R~ ay 

(5) 

OT) c32T M (aT aOi~T aO e2r _ _  

"lot  -tay 0x ax @ = ~ x  2 + ay 2" (6) 

The boundary  conditions may be simplified as follows 
for the case of a fixed-free surface 

0(0,y,  t) = 0(1,y,  t) = O[x,H(x),t] = 0 (7) 

2(I//k+ i--Ok) 
09(0, y, t) ---- o9(1, y, t) Ax: (8) 

4Hxux (1 +Hi)  d T  
°glY=R(x' - ( 1 - H ~  +2v~+  ( 1 - - g ~  dS (9) 

aTIx, H(x), t] 
8n - 0  

(10) 

T(0, y, t) = 0 7-'(1, y, t) = 1, 

where the subscript x denotes differentiation with 
respect to x, 0k+l and 0k are, respectively, the stream 
function values at the distance Ax from the wall, and 
the equation of the free surface is described by 

y = n(x). (11) 

In equation (9), tlae vorticity at the free-surface is 
given by the equilibrium condit ion of tangential 
stresses. Then, the problem is reduced to solve equa- 
tions (4)-(6) under boundary  conditions (7)-(10) for 
certain parameter values. 

The aim of the present calculations is to identify the 
route of transition leading to turbulent convection 
from the steady t]hermocapillary convection in the 
half-floating zone. At first, the steady state (00, co0, 
To) corresponding to applied temperature difference 
T ~ -  T'I = I°C are calculated as the initial values. The 
critical applied temperature difference (T'z-T])c, 
which describes the onset from the symmetric and 
steady convection to periodic and asymmetric oscil- 
latory convection, can be obtained during increased 
applied temperature difference, then a sequence of 
bifurcation may appear. The applied temperature 
difference is increased usually in a step 6T '  = 0.5°C 
and maintained at each AT'  for more than 2 × 105- 
4 × 105 time steps in the present calculation. The iter- 
ative calculation up to the step length of applied tem- 
perature difference 6 T '  = 0.01 °C is necessary for find- 
ing the accurate moment  corresponding to the onset 
of a subharmonic bifurcation. The evolutionary pro- 
cesses for determining the maximum of stream func- 

tions, the vorticity and temperature at the point  of the 
free surface of the half-floating zone are recorded and 
the Fourier spectrum is analyzed at each step. It is 
accurate for finding the start of  the subharmonic bifur- 
cation, such as the frequency-locking at f/2, f/4, f/8, 
f/16, where f i s  basic frequency. 

3. NUMERICAL RESULTS 

The present computational results show that sub- 
harmonic bifurcations off/2" (n = 2, 3, 4) successively 
appear as increasing applied temperature difference 
across the liquid bridge. The evolutionary processes 
of the temperature at a fixed point y = 0.16 mm on 
the free surface are given in Fig. 2a-h. The critical 
applied temperature difference for onset of oscillation 
is AT~ = 40°C, at which the convection transfers from 
steady and symmetric one to oscillatory and asym- 
metric one, as shown in Fig. 2a. Figure 2b and c shows 
similar evolutionary temperature profiles to Fig. 2a 
for 40°C ~< AT'  ~< 55.25°C or 1 ~< R ~< 1.38125, 
where ratio R is introduced as R = AT'/AT'~. The 
shape of the temperature profile is obviously different 
from the ones in Fig. 2a-c if the AT'  increases slightly, 
such as 0.01°C, in addition to 55.25°C (R = 1.38125). 
The temperature records are still periodic at 
AT'  = 58.9°C or R = 1.4725 and AT'  = 59.65°C or 
R = 1.49125, and are followed by non-periodic pat- 
tern at AT'  = 70°C or R = 1.75, as shown in Fig. 2g. 
It is observed from Fig. 2h that the temperature record 
becomes irregular and non-periodic, and the state at 
A T ' =  100°C or R = 2.5 seems to change to fully 
developed turbulent  convection. 

The temperature spectra are plotted in Fig. 3a-h, 
corresponding to the temperature profiles in Fig. 2. 
The computat ion of the spectra is accomplished by 
Fourier transforms. The patterns of temperature spec- 
trum, as shown in Fig. 3a~c for R ~< 1.38125, contain 
a sharp peak of the basic f requencyfand its harmonics 
at multiples of the basic frequency. The basic fre- 
quency increases slightly with increasing R. The first 
and second subharmonic bifurcations occur at the 
same time at AT'  = 55.26°C or R = 1.3815, and pro- 
duce peaks at f/2, f/3 and 3f/4, as shown in Fig. 3d. 
The f/8 bifurcation appears at A T ' =  58.9°C or 
R = 1.4725, as shown in Fig. 3e, which is very weak 
at first, but  grows with increasing R. The f/16 bifur- 
cations and corresponding subharmonics onset at 
AT'  = 59.65°C or R = 1.49125 with stronger back- 
ground fluctuation spectra as given in Fig. 3f. The 
spectra of frequency f/2" (n > 4) are mixed within the 
background fluctuation spectrum to further increase 
the applied temperature difference as shown in the 
Fig. 3g, and there are many close peaks, resulting in 
broadband background spectra. At AT'  = 100°C or 
R = 2.5 the spectrum becomes irregular and random, 
then the periodic convection of subharmonic bifur- 
cation transfers to turbulent convection. 

The process of transition from steady state to tur- 
bulence via subharmonic bifurcations is very complex, 
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Fig. 2. The evolution of surface temperature at y = 0.16 mm, and Dm~,/Do = 0.9. 

the spectrum of f /8  bifurcation appears for a short 
period at AT'  ~> 60°C, and thef/18,f/24 bifurcations 
have been observed when the applied temperature 
difference is larger than 59.65°C. 

The temperature trajectories in the (T, T) phase 
plane, corresponding to the evolutionary processes of 
temperature, are shown in Fig. 4a-h, where T is the 

differentiation of temperature with respect to time. 
There is only a single clockwise closed cycle in the 
phase plane plot in the range 40°C ~< AT' ~< 55.25°C, 
as shown in Fig. 4a. Figure 4d shows that the bifur- 
cation to f/4 is revealed by four cycles with different 
trajectories, and the related temperature spectrum 
contains subharmonics with three frequencies f,  f/2, 
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Fig. 3. The spectrum of surface temperature at y = 0.16 mm, and Dmln/D o = 0.9. 

and f /4 .  The subsequent period-doubling bifurcation 
with increasing AT' can be observed from Fig. 4e and 
f by the gradual splitting of the trajectories in the 
phase plane plot. Many trajectories are wound tog- 
ether if AT' is further increased, for example, 100°C 
as shown in Fig. 4h. The relevant Fourier spectrum in 
Fig. 3h gives no sharp spectral line, and the convection 
becomes fully developed turbulence. 

The time-dependent evolutionary processes of the 
asymmetric flow pattern and iso-thermal counters are 
given, respectively, in Figs. 5 and 6 in a period with 
interval sequence of 1/8 period for applied tem- 
perature difference AT' = 40°C. When AT' increases 
up to 58.5°C, the patterns of thermocapillary oscil- 
latory convection with f / 4  bifurcation in a period of 
the basic frequency no longer exhibit periodicity, as 
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Fig. 4. The phase plane plots of surface temperature at y = 0.16 mm and Drain~Do = 0.9. 

shown in the patterns of  Figs. 7 and 8, and the mul- 
ticells structure can be observed in the flow patterns. 
The maximum stream function and vorticity at the 
point of  the free surface have similar Fourier  spectra, 
with same frequencies but different amplitudes. 

F r o m  Feigenbaum's general theory for the fluc- 
tuation spectrum of the route to turbulence, the value 

a, of  the constraint should asymptotically approach 
the following relation : 

6 , -  a,+,--a. ::~6, (12) 
an+2--an+l 

where 3 = 4.6642016. According to present results, 
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(b) (c) (d) 

(e) (f) (g) (h) 
Fig. 5. The flow patterns in a period for Dmin/D o = 0.9 and AT' = 40°C. 

(b) (a) 

(e) (0 (g) (h) 
Fig. 6. The isothermal counters of the liquid bridge for Dmin/D o = 0.9 and AT' = 40°C. 

the Feigenbaun number computed for the bifurcations 
to the frequenciesfi'4,f/8 and f/16 is 

f s - f ~  58.9-55.26 
34 - - -  - 4.853. (13) 

fl6 --J~ 59.65--58.9 

The result can be compared with theoretical values 
given by Feigenbaun. On the other hand, the average 
value of the odd multiples is computed from the Four- 
ier spectrum, Fig. 4f, ~4/8 = 4.783 and/~8/16 = 1.837. 
These values are lower than the theoretical values. 

4. CONCLUSION 

Thermocapillary convection driven by the non-uni- 
formity of  surface tension is a typical type of dis- 
sipative system, different from Benard convection 

driven by buoyancy. There are many differences 
between these two kinds of convection, and the tran- 
sition features for both convections are attractive from 
the viewpoint of the dissipative system. Transition 
features of thermocapillary convection in the half- 
floating zone have been studied since the mid-1970s, 
and most interest concentrates on the onset of ocil- 
lation, which concerns only the start of the route to 
turbulence. There is a critical applied temperature 
difference or critical Rayleigh number to describe the 
onset of convection for Benard convection. However, 
the critical applied temperature difference or the criti- 
cal Marangoni number is defined by the onset of oscil- 
lation for thermocapillary convection, because a small 
non-uniformity of surface tension due to applied tem- 
perature difference may induce convection. In the pre- 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 
Fig. 7. The flow patterns in a period for Dmin/D o = 0.9 and AT' = 58.5°C. 

(b) (d) 

(e) (f) (g) (h) 
Fig. 8. The isothermal counters of the liquid bridge for Dmin/D o = 0.9 and AT' = 58.5°C. 

sent paper we present a complete route from steady 
convection to turbulence, but not  limited to the route 
near the onset of  oscillation of  the thermocapillary 
convection. 

There are many routes to turbulence, depending on 
the Prandtl number, Rayleigh number and geometric 
aspect for Benard convection, as shown in ref. [2], and 
a fixed route will be determined for fixed parameters. 
In the present paper, a typical geometric aspect of  
A = 1 and liquid volume of Dmin/Do = 0.9 were 
adopted for the case of  small Bond number and larger 
Prandtl number. The results show clearly the route 
from steady convection to turbulent convection via 
the period doubling bifurcations, and the Feigenbaum 
constant obtained by numerical test is close to the 
theoretical value. It means that the route of  sub- 
harmonic bifurcations is typical in the transition pro- 
cess of thermocapi l lary convection. The results of  sub- 

harmonic bifurcation support the idea that the 
oscillation in the liquid bridge of  floating zone is 
induced by the internal instability. However,  as that 
kind of  instability may excite the right features, it 
should be studied carefully. Furthermore,  it will be 
interesting to study and to find the transition process 
for other parameter ranges, and whether there are 
other routes to turbulence for thermocapillary con- 
vection. 

The numerical simulation of  an unsteady two- 
dimensional model  was investigated to show the tran- 
sition process. It seems that the results discover the 
intrinsic physical features of  chaos. It will be of  benefit 
to do the numerical simulation of  an unsteady three- 
dimensional model for half-floating-zone convection. 
On the other hand, it is necessary to study exper- 
imentally the transition process of  half-floating-zone 
convection, which also gave the bifurcation structure 
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in the l abora to ry  on  the grounds  of  a l iquid bridge 
with small  typical scale, and  will be discussed else- 
where. Exper iments  in the microgravi ty  env i ronmen t  
in the future will be useful. 
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